1
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import fetch_california_housing
# Load California housing dataset
housing_data = fetch_california_housing()
df = pd.DataFrame(housing_data.data,
columns=housing_data.feature_names)
# 1. Display First Five Rows
print("First five rows of the dataset:")
print(df.head())
# 2. Dataset Summary
print("\nDataset Summary:")
print(df.describe())
# 3. Histograms for All Features
df.hist(figsize=(12, 8), bins=30, edgecolor='black')
plt.suptitle("Histograms for All Numerical Features", fontsize=16)
plt.show()
# 4. Boxplots for All Features
plt.figure(figsize=(12, 6))
df.boxplot(rot=45)
plt.title("Box Plots for All Numerical Features", fontsize=16)
plt.show()
# 5. Outlier Detection using IQR
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
outliers = ((df<lower_bound) | (df>upper_bound)).sum()
print("\nNumber of Outliers in Each Feature:")
print(outliers)
# 6. Individual Box Plots with Outliers Highlighted
plt.figure(figsize=(12, 8))
for i, col in enumerate(df.columns, 1):
plt.subplot(3, 3, i)
sns.boxplot(x=df[col], color="skyblue")
plt.title(col)
plt.tight_layout()
plt.show()
Comments
Post a Comment