3
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.decomposition import PCA # Load the Iris dataset iris = load_iris() data = iris.data labels = iris.target label_names = iris.target_names # Reduce dimensionality to 2 using PCA pca = PCA(n_components=2) reduced_data = pca.fit_transform(data) # Create DataFrame for visualization df_pca = pd.DataFrame(reduced_data, columns=['PC1', 'PC2']) df_pca['Label'] = labels # Plot PCA result plt.figure(figsize=(8, 6)) colors = ['r', 'g', 'b'] for i, label in enumerate(np.unique(labels)): subset = df_pca[df_pca['Label'] == label] plt.scatter(subset['PC1'], subset['PC2'], color=colors[i], label=label_names[label], alpha=0.7) plt.title('PCA on Iris Dataset') plt.xlabel('Principal Component 1') plt.ylabel('Principal Component 2') plt.legend() plt.grid(True) p...